Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Acs Es&T Water ; 2023.
Article in English | Web of Science | ID: covidwho-2307089

ABSTRACT

Aquatic ecosystems of tropical countries are vulnerable to fecal contamination that could cause spikes in the incidences of acute diarrheal disease (ADD) and challenge public health management systems. Vembanad lake, situated along the southwest coast of India, was monitored for one year (2018-2019). Escherichia coli, an indicator of fecal contamination, was prevalent in the lake throughout the year. Multiple antibiotic resistance among more than 50% of the E. coli isolates adds urgency to the need to control this contamination. The high abundance of E. coli and incidence of ADD were recorded during the early phase of the southwest monsoon (June-July), prior to the once-in-a-century floods that affected the region in the later phase (August). The extent of inundation in the low-lying areas peaked in August, but E. coli in the water peaked in July, suggesting that contamination occurred even prior to extreme flooding. During the COVID-19-related lockdown in March-May 2021, fecal contamination in the lake and incidence of ADD reached minimum values. These results indicate the need for improving sewage treatment facilities and city planning in flood-prone areas to avoid the mixing of septic sewage with natural waters during extreme climate events or even during the normal monsoon.

2.
ACS ES and T Water ; 2022.
Article in English | Scopus | ID: covidwho-2227006

ABSTRACT

Aquatic ecosystems of tropical countries are vulnerable to fecal contamination that could cause spikes in the incidences of acute diarrheal disease (ADD) and challenge public health management systems. Vembanad lake, situated along the southwest coast of India, was monitored for one year (2018-2019). Escherichia coli, an indicator of fecal contamination, was prevalent in the lake throughout the year. Multiple antibiotic resistance among more than 50% of the E. coli isolates adds urgency to the need to control this contamination. The high abundance of E. coli and incidence of ADD were recorded during the early phase of the southwest monsoon (June-July), prior to the once-in-a-century floods that affected the region in the later phase (August). The extent of inundation in the low-lying areas peaked in August, but E. coli in the water peaked in July, suggesting that contamination occurred even prior to extreme flooding. During the COVID-19-related lockdown in March-May 2021, fecal contamination in the lake and incidence of ADD reached minimum values. These results indicate the need for improving sewage treatment facilities and city planning in flood-prone areas to avoid the mixing of septic sewage with natural waters during extreme climate events or even during the normal monsoon. © 2023 American Chemical Society.

3.
Remote Sensing ; 13(9), 2021.
Article in English | Scopus | ID: covidwho-1229284

ABSTRACT

The United Nation’s Sustainable Development Goal Life Below Water (SDG-14) aims to “conserve and sustainably use the oceans, seas, and marine resources for sustainable development”. Within SDG-14, targets 14.1 and 14.2 deal with marine pollution and the adverse impacts of human activities on aquatic systems. Here, we present a remote-sensing-based analysis of short-term changes in the Vembanad-Kol wetland system in the southwest of India. The region has experienced high levels of anthropogenic pressures, including from agriculture, industry, and tourism, leading to adverse ecological and socioeconomic impacts with consequences not only for achieving the targets set out in SDG-14, but also those related to water quality (SDG-6) and health (SDG-3). To move towards the sustainable management of coastal and aquatic ecosystems such as Lake Vembanad, it is important to understand how both natural and anthropogenic processes affect water quality. In 2020, a unique opportunity arose to study water quality in Lake Vembanad during a period when anthropogenic pressures were reduced due to a nationwide lockdown in response to the global pandemic caused by SARS-CoV-2 (25 March–31 May 2020). Using Sentinel-2 and Landsat-8 multi-spectral remote sensing and in situ observations to analyse changes in five different water quality indicators, we show that water quality improved in large areas of Lake Vembanad during the lockdown in 2020, especially in the more central and southern regions, as evidenced by a decrease in total suspended matter, turbidity, and the absorption by coloured dissolved organic matter, all leading to clearer waters as indicated by the Forel-Ule classification of water colour. Further analysis of longer term trends (2013–2020) showed that water quality has been improving over time in the more northern regions of Lake Vembanad independent of the lockdown. The improvement in water quality during the lockdown in April–May 2020 illustrates the importance of addressing anthropogenic activities for the sustainable management of coastal ecosystems and water resources. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

SELECTION OF CITATIONS
SEARCH DETAIL